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Qur Vision

> Quantify green roof benefits within the
Mid-Atlantic region, and beyond

> Provide tools to measure the efficiency
of green roofs

> Increase our knowledge of green roof
system performance, to inform the
industry and design process




Prime Performance Objective
» Quantifying Stormwater runoff

> Quantifying thermal benefits




Stormwater Retention / Runoff

Quantifying Runoff
* Traditional (Curve Number) Approach

* System-based Approach
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Q: How much stormwater is retained by a green roof?

Retention by green roofs varies according to storm size

... and many other system parameters
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Stormwater Retention / Runoff

Quantifying Runoff

* Expensive (especially in retrofit situations)

* Total runoff does not inform the design
process

(i.e. difficult to understand which design
parameters contribute most to efficiency)

—> Hence the advantage of modeling




Quantifying Runoff

Simple Water Balance Approach

i.e., A—B=C, where:

(A) (B) (C)

Rainfall System
(INPUT) = removal = | Runoff
(6ET / 5t)

So -- if we know A and B at any given time,
we can predict C (= C)




Predicting Runoff

But, we recognize that the system removal (&E;)
changes over time (&t), due to:

* Canopy coverage, leaf area

* Seasonal (species-specific) differences
In transpiration rate

* Substrate physical properties

* Root density

We need to include these biological and physical parameters
in the model, to ensure that predicted runoff, C = A - B




Modeling the Green Roof Water Cycle
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Translating Theory into Practice

Predicting Runoff (Efficiency)

* Model - Data Integration

* Tool Development




Modeling the Green Roof Water Cycle

We are using a sensor network / modeling approach,
which integrates the model variables, over time:

Every 5 minutes, we measure:

1. Rainfall [Input]

2 a. Temperature and Relative Humidity (=VPD)
2 b. Radiation (total light)
2 c. Wind speed

to predict plant Evapotranspiration (E;) , using a modified
Penman-Monteith Equation




Modeling the Green Roof Water Cycle

Every 5 minutes, we measure:

3. Substrate moisture content (VWC)

Which integrates:

a. Amount of available water at any one time

b. Plant water use

c. Changesin VWC over time
(due to changes in physical properties, increased
root density, organic matter etc)




Modeling the Green Roof Water Cycle

Every 5 minutes, we measure:

4. Actual Runoff (with rain gauges)

which verifies the predicted model runoff
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Green Roof Experimental Site (2010)




Green Roof Experimental Site (2011)

Three Sedum Species:
e S.album

e S. kamtschaticum

e S. sexangulare

Control:
* No plants
(M2 substrate)
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Wireless Sensor Network Data:
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| UMDGreenhouse Sensorweb

Sunrise 6:30, Sunset 20:18

Current time: 2012 Aug 15 13:18:07 EDT

Navigation

Home Welcome to the UMDGreenhouse sensorweb

Data View
Charts
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Data Export
Settings
Help
Logout
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Measurements?

© Battery Life

@ Daily Irrigation

© Electro-Conductivity (EC)
© PAR

© Sun Power

© Rainfall (Precipitation)
© Rainfall (Volume)

© Soil Moisture (%VWC)

L) Tamnarat:




200 -

180 -

160 -

140 -

Model Verification (2011)
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Further Development / Issues

e Model Refinement:

— Slope, perhaps aspect component

— Changes in substrate components over time
-- both biological and physical

— Lag-to peak issues with measuring actual
retention (various scaling issues)

e Data Management:

— Web-based interface, customizable for individual

green roofs is our immediate goal (next 12-18
months)

— Desktop application (individual managers)

— Cluster-capability (multiple green roof analysis tool)
on the cloud




Benefits

e Cost -- relatively low-cost, low maintenance system

e Retrofit — large cost benefit if this approach works,
since retrofitting existing green roofs with rain

gauges or flumes is costly (and painful) to get good
data

e Model Approach — allows for what-if scenario
building and sensitivity analyses
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